A comparative study of control techniques for an underwater ̄ ight vehicle
نویسندگان
چکیده
Unmanned, underwater vehicles have been developed considerably in recent years. Remotely operated vehicles (ROVs) are increasingly used for routine inspection and maintenance tasks but have a range that is limited by the umbilical cable. For long range operations, such as oceanographic exploration and surveying, autonomous underwater vehicles (AUVs) are emerging which have on-board power and are equipped with advanced control capabilities to carry out tasks with the minimum of human intervention. AUVs typically resemble torpedoes in that most have control surfaces and a single propulsion unit, and must move forwards to manoeuvre. Such vehicles are called ̄ ight vehicles. This paper describes techniques which are candidates for control of a ̄ ight AUV and identi® es controllers used on some existing vehicles. Since underwater vehicle dynamics are nonlinear, fuzzy logic and sliding mode control were felt to have promise for autopilot application due to their potential robustness. Following development using a comprehensive simulation programme, the controllers were tested using the experimental vehicle, Subzero II, and their performance compared with that of a classical linear controller. The relative merits of the methods for practical implementation are discussed.
منابع مشابه
OPTIMIZED FUZZY CONTROL DESIGN OF AN AUTONOMOUS UNDERWATER VEHICLE
In this study, the roll, yaw and depth fuzzy control of an Au- tonomous Underwater Vehicle (AUV) are addressed. Yaw and roll angles are regulated only using their errors and rates, but due to the complexity of depth dynamic channel, additional pitch rate quantity is used to improve the depth loop performance. The discussed AUV has four aps at the rear of the vehicle as actuators. Two rule bases...
متن کاملIdentification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کاملDesign of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective
In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...
متن کاملNonlinear Robust Tracking Control of an Underwater Vehicle-Manipulator System
This paper develops an improved robust multi-surface sliding mode controller for a complicated five degrees of freedom Underwater Vehicle-Manipulator System with floating base. The proposed method combines the robust controller with some corrective terms to decrease the tracking error in transient and steady state. This approach improves the performance of the nonlinear dynamic control scheme a...
متن کاملAutonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach
Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000